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1. INTRODUCTION

In an interesting article, Wang has recently treated the case of vibrating circular membranes
with mass density perturbations [1].
It is the goal of the present investigation to analyze the variation of the lower natural

frequencies of circular membranes in the case of disturbed boundaries; see Figure 1. It is
assumed that the con"guration in the z-plane is mapped onto a unit circle in the �-plane by
means of the analytic function [2]
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where a is the radius of the circumscribing circle and m)1/(n#1).
The governing Helmholtz equation is transformed using equation (1) and the resulting

partial di!erential equation is solved using polynomial co-ordinate functions in the radial
and azimuthal variables. The radial component contains Rayleigh's optimization
exponential parameter &&p'' which allows for minimization of the eigenvalues under
investigation.
The problem is also of considerable interest in other "elds like wave propagation in

electromagnetic and acoustic waveguides, liquid oscillations in a basin, etc., since an ideal
circular shape does possess, in some real situations, geometric alterations.
It is important to point out that Lord Rayleigh presented an approximate method for

obtaining natural frequencies of vibrating circular membranes whose boundaries deviate
slightly from a circular shape [3]. The functional relation (1) was also considered in
a previous study [4] but the co-ordinate functions did not take the azimuthal variation into
account nor did they contain an optimization parameter.

2. APPROXIMATE ANALYTICAL SOLUTION

The transverse motion of a thin, perfectly #exible membrane is governed by the
two-dimensional wave equation,
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Figure 1. Circular membrane with slightly disturbed boundary (n"10, m"0)025).
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which for normal modes becomes
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where � denotes the natural frequency and ;"0 on the boundary. If the boundary of the
membrane is a curve natural to any of the common co-ordinate systems for which equation
(3) separates, the solution can be derived by classical methods, and may be expressed in
terms of known transcendental functions. For more &&exotic'' boundaries it is convenient to
use a conformal mapping approach [4].
In the case of membranes of corrugated boundaries which can be mapped onto a unit

circle in the complex plane by means of equation (1), the problem can be reduced to the
solution of the transformed di!erential system [2]
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where
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"a/(1#m), and � f �(�) ��"f � (�) f �(�) . (5a, b)

In the manner of reference [4], Galerkin's method will be used.
The procedure is as follows: ; (�, �N ) is approximated by a linear combination of

independent co-ordinate functions which identically satisfy the boundary conditions, i.e.,
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where
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By substituting equation (6) into equation (4a), one obtains the error or residual function
	(r, �) which multiplied by r yields
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where ��
�
and �


�
are the "rst and second partial derivatives of �

�
with respect to r, �
�� is the

second partial derivative of �
�
with respect to �, �"[�a/c(1#m)]� and

�"1#2m(n#1)r� cos(n�)#m�(n#1)�r��.

Multiplying equation (8) by each co-ordinate function and integrating with respect to r and
�, one obtains a linear system of homogeneous equations in the b

�
1s and c

�
1s once the

orthogonality requirement is applied.
The non-triviality condition leads to a determinantal equation whose lowest root is the

fundamental frequency coe$cient of the system, �
�
"(�

�
/c)a.

3. NUMERICAL RESULTS

Table 1 depicts values of �
�
and �

�
for n"1 and m"0)5. These frequency parameters

correspond to quasi-axisymmetric modes and they have been obtained for di!erent values
TABLE 1

Frequency coe.cients �
�

and �
�

corresponding to quasi-axisymmetric modes for n"1,
m"0)5

k
�
, k

�
�

�
�

�

1, 0 3)2684� *

3)2863�
1, 1 3)0378� *

3)0489�
2, 0 3)2604� 7)3935

3)2608� 7)6549
2, 1 3)0296� 8)7532

3)0398� 9)1816
3, 0 3)2603� 7)2628

3)2603� 7)2628
2, 2 3)0220� 7)6369

3)0227� 7)7541
3, 1 3)0259� 8)4712

3)0384� 8)8599
4, 0 3)2603� 7)2625

3)2603� 7)2627

�Optimized value.
�Eigenvalue determined for p"2.



TABLE 2

Frequency coe.cients �
�
and �

�
for n"10, m"0)025

k
�
, k

�
�

�
�

�

1, 0 2)4743 *

1, 1 2)4743 *

2, 0 2)4647 5)8014
2, 1 2)4645 5)7963
3, 0 2)4647 5)6602
2, 2 2)4643 5)7862
3, 1 2)4642 5)6601
4, 0 2)4647 5)6501
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of k
�
and k

�
. For k

�
"k

�
"2 one obtains the best approximation for �

�
. This is due to the

improvement introduced by taking into account the �-dependence. On the other hand,
the best approximation for �

�
is attained for k

�
"4 and k

�
"0. This is due to the fact that

the r-dependence is very strong for the second quasi-axisymmetric mode. The values are in
excellent agreement with those obtained in reference [5].
Table 2 shows values of �

�
and �

�
for n"10 and m"0)025 (a slightly disturbed circular

shape with 10 axes of symmetry).
The optimum value of �

�
is achieved for k

�
"3 and k

�
"1 while the best value of �

�
is

obtained for k
�
"4 and k

�
"0.

One concludes that in the case of a slightly disturbed circular boundary, the fundamental
frequency is altered by almost 3% while �

�
is increased by 2%.
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